Assessing nodule detection on lung cancer screening in CT: The effects of tube current modulation and model observer selection on detectability maps

J. Hoffman¹, F. Noo², K. McMillan¹, S. Young¹, M. McNitt-Gray¹

¹Biomedical Physics Interdepartmental Program University of California Los Angeles, Los Angeles, CA

> ²Department of Radiology University of Utah, Salt Lake City, UT

SPIE Medical Imaging 2016: Image Perception, Observer Performance, and Technology Assessment

Disclosures

- John Hoffman:
 - ▶ Part-time intern, Toshiba Medical Research Institute, USA, Inc.
- Frederic Noo:
 - Insitutional research agreement, Siemens Healthcare
 - Receives research funding from Siemens Healthcare
- Michal McNitt-Gray:
 - ▶ Institutional research agreement, Siemens Healthcare
 - Past recipient, research grant support, Siemens Healthcare
 - Consultant, Toshiba America Medical Systems
 - Consultant, Samsung Electronics

- Introduction
 - Motivation
 - Aims
- Methods
 - Data generation
 - Simulation
 - Reconstruction
 - Model Observers
- Results
 - Single slice observers
 - Hotelling observer
 - Channelized Hotelling observer
 - Multislice Observer
- Discussion and Conclusions

- Introduction
 - Motivation
 - Aims
- 2 Methods
 - Data generation
 - Simulation
 - Reconstruction
 - Model Observers
- Results
 - Single slice observers
 - Hotelling observer
 - Channelized Hotelling observer
 - Multislice Observer
- Discussion and Conclusions

- Introduction
 - Motivation
 - Aims
- 2 Methods
 - Data generation
 - Simulation
 - Reconstruction
 - Model Observers
- Results
 - Single slice observers
 - Hotelling observer
 - Channelized Hotelling observer
 - Multislice Observer
- Discussion and Conclusions

- Lung cancer is the leading cause of cancer death 1
- Low-dose CT (LDCT) lung cancer screening has been shown to reduce lung cancer mortality and has recently been approved for use in the US
- Screening scans are performed using low-dose protocols that include the use of tube current modulation (TCM)
- Little is known about the impact of TCM on detection tasks

- Lung cancer is the leading cause of cancer death 1
- Low-dose CT (LDCT) lung cancer screening has been shown to reduce lung cancer mortality and has recently been approved for use in the US
- Screening scans are performed using low-dose protocols that include the use of tube current modulation (TCM)
- Little is known about the impact of TCM on detection tasks

- Lung cancer is the leading cause of cancer death¹
- Low-dose CT (LDCT) lung cancer screening has been shown to reduce lung cancer mortality and has recently been approved for use in the US
- Screening scans are performed using low-dose protocols that include the use of tube current modulation (TCM)
- Little is known about the impact of TCM on detection tasks

- Lung cancer is the leading cause of cancer death¹
- Low-dose CT (LDCT) lung cancer screening has been shown to reduce lung cancer mortality and has recently been approved for use in the US
- Screening scans are performed using low-dose protocols that include the use of tube current modulation (TCM)
- Little is known about the impact of TCM on detection tasks

- TCM has been shown to lower radiation dose while preserving image quality by
 - Increasing tube current in regions/projections of greater attenuation
 - Decreasing tube current in regions/projections of lesser attenuation
- Work has suggested that TCM can impact task-specific detection rates:
 - Gang et al. (2015) ²: Found a 19% decrease in detectability index detection tasks in head with standard TCM approaches
 - ▶ Wunderlich and Noo (2008) ³: Found that TCM's impact depended on the choice of MO and if channels were used, whether the channels were directional or not
- Lack of thorough studies in anatomically realistic settings and tasks

²[Gang et al.,

³[Wunderlich and Noo, 2008]

- TCM has been shown to lower radiation dose while preserving image quality by
 - ▶ Increasing tube current in regions/projections of greater attenuation
 - Decreasing tube current in regions/projections of lesser attenuation
- Work has suggested that TCM can impact task-specific detection
- Lack of thorough studies in anatomically realistic settings and tasks

- TCM has been shown to lower radiation dose while preserving image quality by
 - ► Increasing tube current in regions/projections of greater attenuation
 - ▶ Decreasing tube current in regions/projections of lesser attenuation
- Work has suggested that TCM can impact task-specific detection rates:
 - ► Gang et al. (2015) ²: Found a 19% decrease in detectability index detection tasks in head with standard TCM approaches
 - ▶ Wunderlich and Noo (2008) ³: Found that TCM's impact depended on the choice of MO and if channels were used, whether the channels were directional or not
- Lack of thorough studies in anatomically realistic settings and tasks

 $^{^{2}}$ [Gang et al.,]

³[Wunderlich and Noo, 2008]

- TCM has been shown to lower radiation dose while preserving image quality by
 - ▶ Increasing tube current in regions/projections of greater attenuation
 - Decreasing tube current in regions/projections of lesser attenuation
- Work has suggested that TCM can impact task-specific detection rates:
 - ► Gang et al. (2015) ²: Found a 19% decrease in detectability index detection tasks in head with standard TCM approaches
 - ▶ Wunderlich and Noo (2008) ³: Found that TCM's impact depended on the choice of MO and if channels were used, whether the channels were directional or not
- Lack of thorough studies in anatomically realistic settings and tasks

 $^{^{2}[\}mathsf{Gang}\ \mathsf{et}\ \mathsf{al.},\]$

³[Wunderlich and Noo. 2008]

- TCM has been shown to lower radiation dose while preserving image quality by
 - ▶ Increasing tube current in regions/projections of greater attenuation
 - Decreasing tube current in regions/projections of lesser attenuation
- Work has suggested that TCM can impact task-specific detection rates:
 - ► Gang et al. (2015) ²: Found a 19% decrease in detectability index detection tasks in head with standard TCM approaches
 - Wunderlich and Noo (2008) ³: Found that TCM's impact depended on the choice of MO and if channels were used, whether the channels were directional or not
- Lack of thorough studies in anatomically realistic settings and tasks

 $^{^{2}}$ [Gang et al.,]

³[Wunderlich and Noo, 2008]

- Introduction
 - Motivation
 - Aims
- 2 Methods
 - Data generation
 - Simulation
 - Reconstruction
 - Model Observers
- Results
 - Single slice observers
 - Hotelling observer
 - Channelized Hotelling observer
 - Multislice Observer
- 4 Discussion and Conclusions

Aims

- Assess the impact of TCM on detection in simulated lung screening
- Using
 - task-specific formalism
 - ► realistic data simulation
 - variety of model observers
 - ★ See if MO selection impacts detection trends

- Introduction
 - Motivation
 - Aims
- 2 Methods
 - Data generation
 - Simulation
 - Reconstruction
 - Model Observers
- Results
 - Single slice observers
 - Hotelling observer
 - Channelized Hotelling observer
 - Multislice Observer
- Discussion and Conclusions

- Introduction
 - Motivation
 - Aims
- 2 Methods
 - Data generation
 - Simulation
 - Reconstruction
 - Model Observers
- Results
 - Single slice observers
 - Hotelling observer
 - Channelized Hotelling observer
 - Multislice Observer
- 4 Discussion and Conclusions

Simulation Methods Overview

- Realistic task (detection of ground glass nodules)
- Computational, anatomical phantom
- Realistic modeling of a clinical scanner
- Extensive noise simulation to achieve good statistics

Simulation Methods Overview

- Realistic task (detection of ground glass nodules)
- Computational, anatomical phantom
- Realistic modeling of a clinical scanner
- Extensive noise simulation to achieve good statistics

Task: Ground Glass Nodules

- Hazy, transparent, low-contrast nodules
- Key indicators of cancerous ground glass nodules [Chang et al., 2013]
 - ► **Growth** of nodule (>2mm increase in size)
 - Development of part-solid core
- "Surgical resection leads to excellent prognosis" [Lim et al., 2013]

Task: Ground Glass Nodules

- Hazy, transparent, low-contrast nodules
- Key indicators of cancerous ground glass nodules [Chang et al., 2013]
 - ► **Growth** of nodule (>2mm increase in size)
 - Development of part-solid core
- "Surgical resection leads to excellent prognosis" [Lim et al., 2013]

Task: Ground Glass Nodules

- Hazy, transparent, low-contrast nodules
- Key indicators of cancerous ground glass nodules [Chang et al., 2013]
 - ► **Growth** of nodule (>2mm increase in size)
 - Development of part-solid core
- "Surgical resection leads to excellent prognosis" [Lim et al., 2013]

Simulated Nodules

- 6mm diameter, spherical nodules
- 25 HU contrast against background
- One nodule per lung, per scan \Rightarrow 131 "scans"
- 1mm intervals from shoulders to abdomen (z=54mm to z=184mm, respectively)

Simulation Methods Overview

- Realistic task (detection of ground glass nodules)
- Computational, anatomical phantom
- Realistic modeling of a clinical scanner
- Extensive noise simulation to achieve good statistics

Phantom: The XCAT Phantom⁴

- Anthropomorphic mathematical phantom of thorax
- Voxel values representing physical attenuation values at 80 keV
- No breathing or cardiac motion
- No contrast was simulated

Figure: Axial, coronal and sagittal views of XCAT phantom

Simulation Methods Overview

- Realistic task (detection of ground glass nodules)
- Computational, anatomical phantom
- Realistic modeling of a clinical scanner
- Extensive noise simulation to achieve good statistics

CT Projection Data

Simulation Methods Overview

- Realistic task (detection of ground glass nodules)
- Computational, anatomical phantom
- Realistic modeling of a clinical scanner
- Extensive noise simulation to achieve good statistics

Simulation Summary

- Using all of the simulation tools described, we simulated
 - ▶ 5000 total noise realizations
 - ★ 2500 TCM on
 - ★ 2500 TCM off

- All reconstruction was performed using FreeCT wFBP ⁵
- No iterative reconstruction or denoising
- Reconstructions were performed from 38.5mm to 199.5 mm to capture full extent of lung
 - ▶ $32 \times 32 \times 54$ voxel volumes $(24 \times 24 \times 162 \text{ mm})$
 - Centered on nodules in axial plane
 - 3 mm thick slices
- Nodules simulated and reconstructed separately from noise realizations

- All reconstruction was performed using FreeCT wFBP ⁵
- No iterative reconstruction or denoising
- Reconstructions were performed from 38.5mm to 199.5 mm to capture full extent of lung
 - ► $32 \times 32 \times 54$ voxel volumes $(24 \times 24 \times 162 \text{ mm})$
 - Centered on nodules in axial plane
 - 3 mm thick slices
- Nodules simulated and reconstructed separately from noise realizations

- All reconstruction was performed using FreeCT wFBP ⁵
- No iterative reconstruction or denoising
- Reconstructions were performed from 38.5mm to 199.5 mm to capture full extent of lung
 - ▶ $32 \times 32 \times 54$ voxel volumes $(24 \times 24 \times 162 \text{ mm})$
 - Centered on nodules in axial plane
 - 3 mm thick slices
- Nodules simulated and reconstructed separately from noise realizations

- All reconstruction was performed using FreeCT wFBP ⁵
- No iterative reconstruction or denoising
- Reconstructions were performed from 38.5mm to 199.5 mm to capture full extent of lung
 - ► $32 \times 32 \times 54$ voxel volumes $(24 \times 24 \times 162 \text{ mm})$
 - Centered on nodules in axial plane
 - 3 mm thick slices
- Nodules simulated and reconstructed separately from noise realizations

- Introduction
 - Motivation
 - Aims
- 2 Methods
 - Data generation
 - Simulation
 - Reconstruction
 - Model Observers
- Results
 - Single slice observers
 - Hotelling observer
 - Channelized Hotelling observer
 - Multislice Observer
- 4 Discussion and Conclusions

Detection Task

- Signal known exactly/background known exactly (SKE/BKE)
- Assume: all noise is gaussian
 - ▶ ⇒Test statistic is Gaussian
 - ➤ ⇒Variance in class 1 (signal absent) and class 2 (signal present) statistics can be assumed to be equal without introducing significant error ⁶
- Thus, can go directly from ensemble images→SNR→AUC

l.e.:

$$SNR^2 = \Delta s^t K_n^{-1} \Delta s$$

$$AUC = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{SNR}{2}\right) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{\sqrt{\Delta s^t \mathbf{K}_n^{-1} \Delta s}}{2}\right)$$

⁶[Wunderlich and Noo, 2011]

4 D > 4 A > 4 B > 4 B >

Detection Task

- Signal known exactly/background known exactly (SKE/BKE)
- Assume: all noise is gaussian
 - ► ⇒Test statistic is Gaussian
 - ➤ ⇒Variance in class 1 (signal absent) and class 2 (signal present) statistics can be assumed to be equal without introducing significant error ⁶
- Thus, can go directly from ensemble images→SNR→AUC

$$SNR^2 = \Delta s^t K_n^{-1} \Delta s$$

$$AUC = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{SNR}{2}\right) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{\sqrt{\Delta s^t K_n^{-1} \Delta s}}{2}\right)$$

⁶[Wunderlich and Noo, 2011]

Detection Task

- Signal known exactly/background known exactly (SKE/BKE)
- Assume: all noise is gaussian
 - ► ⇒Test statistic is Gaussian
 - ➤ ⇒Variance in class 1 (signal absent) and class 2 (signal present) statistics can be assumed to be equal without introducing significant error ⁶
- ullet Thus, can go directly from ensemble imagesoSNRoAUC

l.e.:

$$SNR^2 = \Delta s^t K_n^{-1} \Delta s$$

$$AUC = \frac{1}{2} + \frac{1}{2} \text{erf}\left(\frac{SNR}{2}\right) = \frac{1}{2} + \frac{1}{2} \text{erf}\left(\frac{\sqrt{\Delta \mathbf{s}^t \mathbf{K}_n^{-1} \Delta \mathbf{s}}}{2}\right)$$

• Reminder: our aim is to

Investigate TCM's impact on regional nodule detection

Use AUC from different MOs as a metric for detectability

Does MO selection impact trends in detectability?

- Detectability maps
 - Plots of AUC as a function of nodule location

• Reminder: our aim is to

Investigate TCM's impact on regional nodule detection

• Use AUC from different MOs as a metric for detectability

Does MO selection impact trends in detectability?

- Detectability maps
 - Plots of AUC as a function of nodule location

• Reminder: our aim is to

Investigate TCM's impact on regional nodule detection

Use AUC from different MOs as a metric for detectability

Does MO selection impact trends in detectability?

- Detectability maps
 - Plots of AUC as a function of nodule location

SPIE 2016

• Reminder: our aim is to

Investigate TCM's impact on regional nodule detection

Use AUC from different MOs as a metric for detectability

Does MO selection impact trends in detectability?

- Detectability maps
 - Plots of AUC as a function of nodule location

• To produce our AUC statistics, we utilized a variety of model observers...

- "Single" Slice (MOs run on 2D image data)
 - Average
 - ★ Hotelling observer
 - ★ Channelized Hotelling observer
 - Central Slice
 - ★ Hotelling observer
 - ★ Channelized Hotelling observer
- Volumetric (Fully 3D MOs)
 - Hotelling observer
 - Non-prewhitening matched filter
- Multislice (Hybrid 2D/3D)
 - Channelized hotelling in XY & NPWMF in Z

- "Single" Slice (MOs run on 2D image data)
 - Average
 - * Hotelling observer
 - ★ Channelized Hotelling observer
 - Central Slice
 - ★ Hotelling observer
 - ★ Channelized Hotelling observer
- Volumetric (Fully 3D MOs)
 - Hotelling observer
 - Non-prewhitening matched filter
- Multislice (Hybrid 2D/3D)
 - Channelized hotelling in XY & NPWMF in Z

- "Single" Slice (MOs run on 2D image data)
 - Average
 - ★ Hotelling observer
 - ★ Channelized Hotelling observer
 - Central Slice
 - ★ Hotelling observer
 - ★ Channelized Hotelling observer
- Volumetric (Fully 3D MOs)
 - Hotelling observer
 - Non-prewhitening matched filter
- Multislice (Hybrid 2D/3D)
 - Channelized hotelling in XY & NPWMF in Z

Single-slice Averaging

- Compress volumetric data into a single slice by taking average of all slices, then run MO
 - Hotelling observer
 - ► Channelized Hotelling observer

- "Single" Slice (MOs run on 2D image data)
 - Average
 - * Hotelling observer
 - ★ Channelized Hotelling observer
 - Central Slice
 - ★ Hotelling observer
 - ★ Channelized Hotelling observer
- Volumetric (Fully 3D MOs)
 - Hotelling observer
 - Non-prewhitening matched filter
- Multislice (Hybrid 2D/3D)
 - Channelized hotelling in XY & NPWMF in Z

Hotelling Observer

Hotelling Observer (with Gaussian noise)

$$\lambda_{HO}(\mathbf{g}) = \Delta \mathbf{s}^t \mathbf{K}_n^{-1} \mathbf{g}$$

 $SNR_\lambda^2 = \Delta \mathbf{s}^t \mathbf{K}_n^{-1} \Delta \mathbf{s}$

- "Single" Slice (MOs run on 2D image data)
 - Average
 - ★ Hotelling observer
 - ★ Channelized Hotelling observer
 - ► Central Slice
 - ★ Hotelling observer
 - ★ Channelized Hotelling observer
- Volumetric (Fully 3D MOs)
 - Hotelling observer
 - Non-prewhitening matched filter
- Multislice (Hybrid 2D/3D)
 - Channelized hotelling in XY & NPWMF in Z

Channelized Observers

• Channelize using 40 Gabor Channels ⁷

• Internal observer noise added as a multiplicative factor to the diagonal of the covariance matrix:

$$K_{\text{internal noise}} = K + 0.75 \times \text{diag}(K)$$

Channelized Observers

Channelize using 40 Gabor Channels ⁷

• Internal observer noise added as a multiplicative factor to the diagonal of the covariance matrix:

$$K_{internal\ noise} = K + 0.75 \times diag(K)$$

⁷Channels created using IQmodelo: https://github.com/DIDSR/IQmodelo

Channelized Hotelling Observer (CHO)

Channelized Hotelling observer

$$\lambda_{CHO} = \omega_{CHO}^t \mathbf{g}_c$$

$$SNR_{CHO}^2 = \Delta \bar{\mathbf{s}}_c^t \mathbf{K}_{c,n}^{-1} \Delta \bar{\mathbf{s}}_c$$

- "Single" Slice (MOs run on 2D image data)
 - Average
 - ★ Hotelling observer
 - ★ Channelized Hotelling observer
 - Central Slice
 - ★ Hotelling observer
 - ★ Channelized Hotelling observer
- Volumetric (Fully 3D MOs)
 - Hotelling observer
 - Non-prewhitening matched filter
- Multislice (Hybrid 2D/3D)
 - Channelized hotelling in XY & NPWMF in Z

Multi-slice CHO

- Multi-slice Channelized Hotelling Observer "C"
 - ► All slices are channelized individually
 - Channelized slices are fed into 1D Hotelling observer

Image source: [Platiša et al., 2011]

Multislice Observer

- Better than single slice observers, but not fully three-dimensional
- Benefits:
 - Perhaps closer to how human observers integrate volumetric data
 - Channelization helps limit the size of the covariance matrix compared to a volumetric HO
 - Better statistics when data is limited

Multislice Observer

- Better than single slice observers, but not fully three-dimensional
- Benefits:
 - ▶ Perhaps closer to how human observers integrate volumetric data
 - Channelization helps limit the size of the covariance matrix compared to a volumetric HO
 - Better statistics when data is limited

We want to use these MOs to answer the following

- Does TCM use impact the regional detectability of nodules in the lung?
- ② Does MO selection affect any observed trends?

We want to use these MOs to answer the following

- Does TCM use impact the regional detectability of nodules in the lung?
- ② Does MO selection affect any observed trends?

Outline

- Introduction
 - Motivation
 - Aims
- 2 Methods
 - Data generation
 - Simulation
 - Reconstruction
 - Model Observers
- Results
 - Single slice observers
 - Hotelling observer
 - Channelized Hotelling observer
 - Multislice Observer
- Discussion and Conclusions

Outline

- Introduction
 - Motivation
 - Aims
- 2 Methods
 - Data generation
 - Simulation
 - Reconstruction
 - Model Observers
- Results
 - Single slice observers
 - Hotelling observer
 - Channelized Hotelling observer
 - Multislice Observer
- 4 Discussion and Conclusions

SPIE 2016

Single-slice-average Hotelling Observer

- Fixed Tube current: detection lowest in shoulders, highest in lower lung
- TCM: detection highest in shoulders, lowest in mid-lower lung, increasing into the abdomen

CHO Single Slice Average

- Trends same as single-slice averaged HO
- Internal noise lowers detection, however does not impact trends

Outline

- Introduction
 - Motivation
 - Aims
- 2 Methods
 - Data generation
 - Simulation
 - Reconstruction
 - Model Observers
- Results
 - Single slice observers
 - Hotelling observer
 - Channelized Hotelling observer
 - Multislice Observer
- 4 Discussion and Conclusions

Multi-slice CHO Results

- Detection substantially higher than single-slice observers
- Trends for fixed TC and modulated TC are same as single-slice observers

Summary

- In fixed TC scans, detection is lowest through shoulders, leveling off in lower lung
- In modulated TC scans
 - Highest through shoulders
 - Lowest through lower lung
 - Increasing into the abdomen as TC prospectively increases
 - Detectability roughly follows TCM profile

Summary

- In fixed TC scans, detection is lowest through shoulders, leveling off in lower lung
- In modulated TC scans
 - Highest through shoulders
 - Lowest through lower lung
 - Increasing into the abdomen as TC prospectively increases
 - Detectability roughly follows TCM profile

Summary

- In fixed TC scans, detection is lowest through shoulders, leveling off in lower lung
- In modulated TC scans
 - Highest through shoulders
 - Lowest through lower lung
 - Increasing into the abdomen as TC prospectively increases
 - Detectability roughly follows TCM profile

TCM overlay

Fixed TC Overlay

Outline

- Introduction
 - Motivation
 - Aims
- 2 Methods
 - Data generation
 - Simulation
 - Reconstruction
 - Model Observers
- Results
 - Single slice observers
 - Hotelling observer
 - Channelized Hotelling observer
 - Multislice Observer
- Discussion and Conclusions

Discussion

- In this work, TCM has a non-trivial impact on detection of difficult. low-contrast lesions
- Consistent detectability behavior between all observers
 - MO selection did not appear to have a major impact on detectability trends for this type of task
- While humans may have a hard time detecting 6mm, 25 HU lesions, TCM scheme design will likely impact CAD and quantitative imaging

Discussion

- In this work, TCM has a non-trivial impact on detection of difficult, low-contrast lesions
- Consistent detectability behavior between all observers
 - MO selection did not appear to have a major impact on detectability trends for this type of task
- While humans may have a hard time detecting 6mm, 25 HU lesions, TCM scheme design will likely impact CAD and quantitative imaging

Discussion

- In this work, TCM has a non-trivial impact on detection of difficult, low-contrast lesions
- Consistent detectability behavior between all observers
 - MO selection did not appear to have a major impact on detectability trends for this type of task
- While humans may have a hard time detecting 6mm, 25 HU lesions, TCM scheme design will likely impact CAD and quantitative imaging

- Task is too "easy" (... for MOs)
 - ▶ MOs consistently display very high detectability leading to...
- Task is too difficult (... for humans)
 - 6mm, 25 HU nodule is exceedingly difficult to detect
 - Clinical "relevance" (i.e. to human readers) is perhaps "broken"
- Photon counts are low in lateral projections (3-4 photons in some detectors)
 - Electronic noise
- No anatomical noise

- Task is too "easy" (... for MOs)
 - ▶ MOs consistently display very high detectability leading to...
- Task is too difficult (... for humans)
 - 6mm, 25 HU nodule is exceedingly difficult to detect
 - Clinical "relevance" (i.e. to human readers) is perhaps "broken"
- Photon counts are low in lateral projections (3-4 photons in some detectors)
 - Electronic noise
- No anatomical noise

- Task is too "easy" (... for MOs)
 - ▶ MOs consistently display very high detectability leading to...
- Task is too difficult (... for humans)
 - 6mm, 25 HU nodule is exceedingly difficult to detect
 - Clinical "relevance" (i.e. to human readers) is perhaps "broken"
- Photon counts are low in lateral projections (3-4 photons in some detectors)
 - ► Electronic noise
- No anatomical noise

- Task is too "easy" (... for MOs)
 - ▶ MOs consistently display very high detectability leading to...
- Task is too difficult (... for humans)
 - 6mm, 25 HU nodule is exceedingly difficult to detect
 - Clinical "relevance" (i.e. to human readers) is perhaps "broken"
- Photon counts are low in lateral projections (3-4 photons in some detectors)
 - ► Electronic noise
- No anatomical noise

SPIE 2016

Future work

- More challenging task for the MOs
 - Object classification (vessel/nodule)
 - Search tasks
 - ► Include anatomical noise
- More clinically realistic task (higher contrast nodules, nodules of varying sizes, etc.)
- Novel TCM optimization schemes for
 - Known nodule location
 - Unknown nodule location
 - Maximize overall detection across whole lung

Future work

- More challenging task for the MOs
 - Object classification (vessel/nodule)
 - Search tasks
 - ► Include anatomical noise
- More clinically realistic task (higher contrast nodules, nodules of varying sizes, etc.)
- Novel TCM optimization schemes for
 - Known nodule location
 - Unknown nodule location
 - Maximize overall detection across whole lung

Future work

- More challenging task for the MOs
 - Object classification (vessel/nodule)
 - Search tasks
 - ► Include anatomical noise
- More clinically realistic task (higher contrast nodules, nodules of varying sizes, etc.)
- Novel TCM optimization schemes for
 - Known nodule location
 - Unknown nodule location
 - Maximize overall detection across whole lung

Finally...

Thank you for your interest and any questions!

References I

Chang, B., Hwang, J. H., Choi, Y. H., Chung, M. P., Kim, H., Kwon, O. J., Lee, H. Y., Lee, K. S., Shim, Y. M., Han, J., and Um, S. W. (2013). Natural history of pure ground-glass opacity lung nodules detected by low-dose CT scan. *Chest*, 143(1):172–178.

Gang, G. J., Stayman, J. W., Ehtiati, T., and Siewerdsen, J. H. Task-driven image acquisition and reconstruction in cone-beam CT. *Physics in Medicine & Biology*, 3129:3129.

Hoffman, J., Young, S., Noo, F., and McNitt-Gray, M. (2016). Technical Note: FreeCT wFBP: A robust, efficient, open-source implementation of weighted filtered backprojection for helical, fan-beam CT. *Medical physics*, 43(3):10 pp.

Lim, H. J., Ahn, S., Lee, K. S., Han, J., Shim, Y. M., Woo, S., Kim, J. H., Yie, M., Lee, H. Y., and Yi, C. A. (2013). Persistent pure ground-glass opacity lung nodules ≥ 10 mm in diameter at CT scan: Histopathologic comparisons and prognostic implications. Chest, 144(4):1291–1299.

Mcmillan, K., Bostani, M., Mccollough, C. H., and McNitt-Gray, M. (2015). TU-EF-204-01: Accurate Prediction of CT Tube Current Modulation: Estimating Tube Current Modulation Schemes for Voxelized Patient Models Used in Monte Carlo Simulations. *Medical Physics*, 42:3620.

Platiša, L., Goossens, B., Vansteenkiste, E., Park, S., Gallas, B. D., Badano, A., and Philips, W. (2011). Channelized Hotelling observers for the assessment of volumetric imaging data sets. *Journal of the Optical Society of America A*, 28(6):1145–63.

Segars, W. P., Sturgeon, G., Mendonca, S., Grimes, J., and Tsui, B. M. W. (2010). 4D XCAT phantom for multimodality imaging research. *Medical physics*, 37(9):4902-4915.

References II

Wunderlich, A. and Noo, F. (2008). Evaluation of the impact of tube current modulation on lesion detectability using model observers. Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2008:2705-8.

Wunderlich, A. and Noo, F. (2011). Confidence intervals for performance assessment of linear observers. Medical Physics, 38(S1):S57.

