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Motivation

Often need to standardize protocols across dissimilar scanners

Of the parameters we control (kVp, tube output (mAs/CTDIvol),
slice-thickness), reconstruction kernel remains problematic
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Kernels

Kernels obey some basic rules. If G (u) is our kernel in the Fourier
domain, and u is spatial frequency, then:

I G (u) should be real and even,
I G (u) = |u| for u near 0, and
I G (u) is smooth except at 0 and the Nyquist frequency.

Kernels are otherwise somewhat �free-form�

I Intra-manufacturer variations (name changes, scanner upgrades, etc.)
I Inter-manufacturer variations (naming schemes, underlying kernel
behavior, etc.)
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Examples

Figure : Siemens CT Reconstruction kernel pro�les from Volume Zoom. Source:
Schaller et al. 2003
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Aim

How can we probe beyond names like �body�, �lung�, �detail�, �B10s�,
�H40f�, for some mathematical information about the reconstruction
kernel?

Let's develop a method to access reconstruction kernel structure.
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Assumptions

We can perform two sets of reconstructions from the same raw

data

I a �test�
I a �reference�

Everything (algorithm, preprocessing, slice thickness, etc.) is the same
except recon kernel.

For scanner-independence, we must know the �reference� kernel

pro�le in the Fourier domain.
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The Full Kernel Extraction Process

Figure : Flowchart of kernel extraction via proposed method
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Step 1: Raw data to Fourier domain image data

Figure : Flowchart of kernel extraction via proposed method
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Raw data to Fourier domain image data
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Fourier domain image data - detail
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Step 2: Ratio image and radial distribution

Figure : Flowchart of kernel extraction via proposed method
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Ratio image and radial distribution
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Step 3: Multiply by reference kernel (if known)

Figure : Flowchart of kernel extraction via proposed method
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Multiply by reference kernel
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And �nally....

Figure : Flowchart of kernel extraction via proposed method
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Step 3 cont.: Arrive at �nal, absolute kernel pro�le

Figure : Flowchart of kernel extraction via proposed method
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Final kernel pro�le
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Raw Data

Method was tested on data from Sensation 64 and De�nition AS

64 (Siemens Healthcare, Forchheim, Germany)

For each scanner, 5 scans through a 16 cm, centered, water

phantom were acquired with

I 1 second rotation time
I 64x0.6mm collimation
I Z + Phi �ying focal spots
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Reconstructions

Each raw data �le was reconstructed on the scanner with the following
parameters:

I Weighted �ltered backprojection
I Slice thickness and spacing: 0.6 mm
I Reconstruction diameter (FOV): 250mm
I Kernels: B10, B20, B30, B40, B50, B60, B70, and B80 (�test�
reconstructions)

In addition, each raw data �le was reconstructed using custom
software, FreeCT_wFBP1, using same parameters but with a ramp

kernel (�reference� reconstructions).

1http://github.com/FreeCT/FreeCT_wFBP, submitted to MedPhys
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Analysis

Each test image (scanner-reconstructed image) and corresponding
reference (ramp image) were analyzed using the outlined method.

All pro�les for a given scanner and kernel were then averaged together
for a �nal kernel pro�le.

Sanity-check using scanner-speci�c B80 reconstruction as reference
(instead of ramp kernel)

J. Ho�man, M. McNitt-Gray (UCLA) A Method for Kernel Comparison RSNA 2015 29 / 45



Analysis

Each test image (scanner-reconstructed image) and corresponding
reference (ramp image) were analyzed using the outlined method.

All pro�les for a given scanner and kernel were then averaged together
for a �nal kernel pro�le.

Sanity-check using scanner-speci�c B80 reconstruction as reference
(instead of ramp kernel)

J. Ho�man, M. McNitt-Gray (UCLA) A Method for Kernel Comparison RSNA 2015 29 / 45



Analysis

Each test image (scanner-reconstructed image) and corresponding
reference (ramp image) were analyzed using the outlined method.

All pro�les for a given scanner and kernel were then averaged together
for a �nal kernel pro�le.

Sanity-check using scanner-speci�c B80 reconstruction as reference
(instead of ramp kernel)

J. Ho�man, M. McNitt-Gray (UCLA) A Method for Kernel Comparison RSNA 2015 29 / 45



Hypothesis: If the method works...

We should see the same kernel pro�les between the two scanners.
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Results: Sensation 64
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Results: De�nition AS 64
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The Good
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The Not-So-Good - B50
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The Not-So-Good - B60
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The Not-So-Good - B70
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Possible causes

Ramp kernel reconstruction

Reconstruction kernels are di�erent between scanners
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Results: Sensation 64, B80 Reference
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Results: De�nition AS 64, B80 Reference
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Possible causes

Ramp kernel reconstruction

Reconstruction kernels are di�erent between scanners
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Conclusions

A method to extract reconstruction kernel pro�les from image data
has been presented

Possible applications include:

I Cross-platform protocol standardization (research, clinical trials, etc.)
I Reverse engineering
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Further Work

Di�erent phantoms

Scanners from other manufacturers

E�ects of FOV, slice thickness, noise, etc.

Does matching kernels necessarily match other image performance
metrics (MTF, NPS, etc.)?

Utilizing method for quantitative imaging
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Finally...

Thank you for your interest and any questions!
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