A Method for Cross-platform Comparison of Reconstruction Kernels in CT

J. Hoffman¹ M. McNitt-Gray¹

¹Biomedical Physics Interdepartmental Program University of California Los Angeles

Radiological Society of North America Annual Meeting, 2015

Disclosures

- John Hoffman:
 - ▶ Part-time intern, Toshiba Medical Research Institute, USA, Inc.
- Michal McNitt-Gray:
 - ▶ Institutional research agreement, Siemens Healthcare
 - ▶ Past recipient, research grant support, Siemens Healthcare
 - Consultant, Toshiba America Medical Systems
 - Consultant, Samsung Electronics

Outline

- Introduction
 - Motivation
 - Aims
- Mernel Extraction Approach
 - Assumptions
 - Overview
- Second Second
 - Methods
 - Results
 - Conclusions

Outline

- Introduction
 - Motivation
 - Aims
- Kernel Extraction Approach
 - Assumptions
 - Overview
- Evaluation
 - Methods
 - Results
 - Conclusions

Motivation

- Often need to standardize protocols across dissimilar scanners
- Of the parameters we control (kVp, tube output (mAs/CTDIvol), slice-thickness), reconstruction kernel remains problematic

Motivation

- Often need to standardize protocols across dissimilar scanners
- Of the parameters we control (kVp, tube output (mAs/CTDlvol), slice-thickness), reconstruction kernel remains problematic

- Kernels obey some basic rules. If G(u) is our kernel in the Fourier domain, and u is spatial frequency, then:
 - \triangleright G(u) should be real and even,
 - ightharpoonup G(u) = |u| for u near 0, and
 - ightharpoonup G(u) is smooth except at 0 and the Nyquist frequency.
- Kernels are otherwise somewhat "free-form"
 - ▶ Intra-manufacturer variations (name changes, scanner upgrades, etc.)
 - Inter-manufacturer variations (naming schemes, underlying kernel behavior, etc.)

- Kernels obey some basic rules. If G(u) is our kernel in the Fourier domain, and u is spatial frequency, then:
 - G(u) should be real and even,
 - ightharpoonup G(u) = |u| for u near 0, and
 - ightharpoonup G(u) is smooth except at 0 and the Nyquist frequency.
- Kernels are otherwise somewhat "free-form"
 - ▶ Intra-manufacturer variations (name changes, scanner upgrades, etc.)
 - Inter-manufacturer variations (naming schemes, underlying kernel behavior, etc.)

- Kernels obey some basic rules. If G(u) is our kernel in the Fourier domain, and u is spatial frequency, then:
 - ightharpoonup G(u) should be real and even,
 - G(u) = |u| for u near 0, and
 - ightharpoonup G(u) is smooth except at 0 and the Nyquist frequency.
- Kernels are otherwise somewhat "free-form"
 - ▶ Intra-manufacturer variations (name changes, scanner upgrades, etc.)
 - Inter-manufacturer variations (naming schemes, underlying kernel behavior, etc.)

- Kernels obey some basic rules. If G(u) is our kernel in the Fourier domain, and u is spatial frequency, then:
 - ightharpoonup G(u) should be real and even,
 - G(u) = |u| for u near 0, and
 - ightharpoonup G(u) is smooth except at 0 and the Nyquist frequency.
- Kernels are otherwise somewhat "free-form"
 - ▶ Intra-manufacturer variations (name changes, scanner upgrades, etc.)
 - Inter-manufacturer variations (naming schemes, underlying kernel behavior, etc.)

- Kernels obey some basic rules. If G(u) is our kernel in the Fourier domain, and u is spatial frequency, then:
 - ightharpoonup G(u) should be real and even,
 - G(u) = |u| for u near 0, and
 - ightharpoonup G(u) is smooth except at 0 and the Nyquist frequency.
- Kernels are otherwise somewhat "free-form"
 - ▶ Intra-manufacturer variations (name changes, scanner upgrades, etc.)
 - Inter-manufacturer variations (naming schemes, underlying kernel behavior, etc.)

Examples

Fig. 2. Fourier transforms $\overline{K}_m(\omega_t)$ of the standard body kernels of the 4-slice CT scanner Siemens SOMATOM Volume Zoom.

Figure : Siemens CT Reconstruction kernel profiles from Volume Zoom. Source: Schaller et al. 2003

Outline

- Introduction
 - Motivation
 - Aims
- Mernel Extraction Approach
 - Assumptions
 - Overview
- 3 Evaluation
 - Methods
 - Results
 - Conclusions

Aim

- How can we probe beyond names like "body", "lung", "detail", "B10s", "H40f", for some mathematical information about the reconstruction kernel?
- Let's develop a method to access reconstruction kernel structure.

Aim

- How can we probe beyond names like "body", "lung", "detail", "B10s", "H40f", for some mathematical information about the reconstruction kernel?
- Let's develop a method to access reconstruction kernel structure.

Outline

- Introduction
 - Motivation
 - Aims
- Mernel Extraction Approach
 - Assumptions
 - Overview
- Evaluation
 - Methods
 - Results
 - Conclusions

RSNA 2015

Assumptions

- We can perform two sets of reconstructions from the same raw data
 - ► a "test"
 - ▶ a "reference"
- Everything (algorithm, preprocessing, slice thickness, etc.) is the same except recon kernel.
- For scanner-independence, we must know the "reference" kernel profile in the Fourier domain.

Assumptions

- We can perform two sets of reconstructions from the same raw data
 - ► a "test"
 - ▶ a "reference"
- Everything (algorithm, preprocessing, slice thickness, etc.) is the same except recon kernel.
- For scanner-independence, we must know the "reference" kernel profile in the Fourier domain.

Outline

- Introduction
 - Motivation
 - Aims
- Mernel Extraction Approach
 - Assumptions
 - Overview
- Evaluation
 - Methods
 - Results
 - Conclusions

RSNA 2015

The Full Kernel Extraction Process

Figure: Flowchart of kernel extraction via proposed method

Step 1: Raw data to Fourier domain image data

Figure: Flowchart of kernel extraction via proposed method

RSNA 2015

Raw data to Fourier domain image data

Fourier domain image data - detail

Step 2: Ratio image and radial distribution

Figure : Flowchart of kernel extraction via proposed method

Step 2: Ratio image and radial distribution

Figure : Flowchart of kernel extraction via proposed method

Ratio image and radial distribution

Step 3: Multiply by reference kernel (if known)

Figure : Flowchart of kernel extraction via proposed method

Step 3: Multiply by reference kernel (if known)

Figure : Flowchart of kernel extraction via proposed method

Multiply by reference kernel

And finally....

Figure : Flowchart of kernel extraction via proposed method

Step 3 cont.: Arrive at final, absolute kernel profile

Figure: Flowchart of kernel extraction via proposed method

Final kernel profile

Outline

- Introduction
 - Motivation
 - Aims
- Mernel Extraction Approach
 - Assumptions
 - Overview
- Evaluation
 - Methods
 - Results
 - Conclusions

Raw Data

- Method was tested on data from Sensation 64 and Definition AS
 64 (Siemens Healthcare, Forchheim, Germany)
- For each scanner, 5 scans through a 16 cm, centered, water phantom were acquired with
 - ▶ 1 second rotation time
 - ► 64x0.6mm collimation
 - Z + Phi flying focal spots

Reconstructions

- Each raw data file was reconstructed on the scanner with the following parameters:
 - Weighted filtered backprojection
 - ► Slice thickness and spacing: 0.6 mm
 - Reconstruction diameter (FOV): 250mm
 - Kernels: B10, B20, B30, B40, B50, B60, B70, and B80 ("test") reconstructions)
- In addition, each raw data file was reconstructed using custom

Reconstructions

- Each raw data file was reconstructed on the scanner with the following parameters:
 - Weighted filtered backprojection
 - Slice thickness and spacing: 0.6 mm
 - Reconstruction diameter (FOV): 250mm
 - Kernels: B10, B20, B30, B40, B50, B60, B70, and B80 ("test") reconstructions)
- In addition, each raw data file was reconstructed using custom software, FreeCT wFBP¹, using same parameters but with a ramp kernel ("reference" reconstructions).

Analysis

- Each test image (scanner-reconstructed image) and corresponding reference (ramp image) were analyzed using the outlined method.
- All profiles for a given scanner and kernel were then averaged together for a final kernel profile.
- Sanity-check using scanner-specific B80 reconstruction as reference (instead of ramp kernel)

Analysis

- Each test image (scanner-reconstructed image) and corresponding reference (ramp image) were analyzed using the outlined method.
- All profiles for a given scanner and kernel were then averaged together for a final kernel profile.
- Sanity-check using scanner-specific B80 reconstruction as reference (instead of ramp kernel)

Analysis

- Each test image (scanner-reconstructed image) and corresponding reference (ramp image) were analyzed using the outlined method.
- All profiles for a given scanner and kernel were then averaged together for a final kernel profile.
- Sanity-check using scanner-specific B80 reconstruction as reference (instead of ramp kernel)

Hypothesis: If the method works...

• We should see the same kernel profiles between the two scanners.

Outline

- Introduction
 - Motivation
 - Aims
- Kernel Extraction Approach
 - Assumptions
 - Overview
- Evaluation
 - Methods
 - Results
 - Conclusions

Results: Sensation 64

Results: Definition AS 64

The Good

The Not-So-Good - B50

The Not-So-Good - B60

The Not-So-Good - B70

Possible causes

- Ramp kernel reconstruction
- Reconstruction kernels are different between scanners

Results: Sensation 64, B80 Reference

Results: Definition AS 64, B80 Reference

Possible causes

- Ramp kernel reconstruction
- Reconstruction kernels are different between scanners

Outline

- Introduction
 - Motivation
 - Aims
- Kernel Extraction Approach
 - Assumptions
 - Overview
- Evaluation
 - Methods
 - Results
 - Conclusions

RSNA 2015

Conclusions

- A method to extract reconstruction kernel profiles from image data has been presented
- Possible applications include:
 - Cross-platform protocol standardization (research, clinical trials, etc.
 - Reverse engineering

Conclusions

- A method to extract reconstruction kernel profiles from image data has been presented
- Possible applications include:
 - Cross-platform protocol standardization (research, clinical trials, etc.)
 - Reverse engineering

RSNA 2015

Further Work

- Different phantoms
- Scanners from other manufacturers
- Effects of FOV, slice thickness, noise, etc.
- Does matching kernels necessarily match other image performance metrics (MTF, NPS, etc.)?
- Utilizing method for quantitative imaging

Finally...

Thank you for your interest and any questions!

RSNA 2015