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Imaging is a Numbers Game: Challenges and
Breakthroughs in CT Quanfitative Imaging

John M Hoffman UCLA Health



Today's Goal

* lllustrate the major obstacles facing the clinical adoption
of quantitative imaging (with specific focus on CT
Imaging)

* Highlight technological solutions we are developing to
overcome these challenges




Quantitative CT Imaging
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Quantitative CT Imaging

INVITED PERSPECTIVE

Standardization of Quantitative Imaging: The Time Is Right,
and 3F-FDG PET/CT Is a Good Place to Start

- “Success will be achieved when quantitative imaging results are
broadly comparable and widely disseminated rather than being
possible only in highly selective and controlled environments.”

(Buckler and Boellaard, 2011)




Challenges




Obstacles

|. Heterogeneity
7. Robustness

3. Data




Obstacle 1: Heterogeneity

* [deal quantitative imaging
test would only respond if
there is an underlying
change in the subject




Obstacle 1: Heterogeneity
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Obstacle 1: Heterogeneity

« Sources of variation

* Manufacturers (can’t control)
* Beam spectrum
« Detectors
« Reconstruction algorithms

- Clinical sites (could maybe control)
« Scan protocols (i.e. doses)
« Reconstruction kernels/iterative strength
» Slice thickness
- Patient size, breath-hold, coaching

- Quantitative tests (| don't understand why we can’'t control)
* Implementation details




Obstacle 2: Robustness

* Are quantitative imaging tests “stable” under all of that
heterogeneity?

* Overlooked in literature




Obstacle 3: Data

* Machine learning
» Requires massive amounts of data

» Public datasets (NSCLC, LIDC, NLST)
 “Dirty data in, dirty data out”

» Build our own
« PACS

 Start from raw data — performing each reconstruction is
extremely time consuming



Obstacles

|. Heterogeneity
Too muchl!

7. Robustness

(Nearly) complete lack of
3. Data

Not enough!




Breakthroughs




Initial Steps

Variability in CT lung-nodule volumetry: Effects of dose reduction
and reconstruction methods
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Initial Steps

- Needed a better way

* Lower experimental “*overhead”
« Time spent reconstructing — 6 months, 1400 reconstructions
» Evaluatfion methods
- Evaluating a much larger range of conditions
* Dose
« Reconstruction algorithm
« Reconstruction settings (e.g. kernel, slice thickness)
* More subjects

- Evaluating several (or many) quantitative tests




Breakthroughs

- Step 1: Bring the reconstruction out of the clinic into our

lab
FreeCTQ
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Breakthroughs FreeCTQ

» Clinical-quality reconstruction w/o the scanner
- Datasets to get researchers started

* More under development
* FreeCT ICD
* Patient datasets

* Free, open-source (GNU GPL v2.0)




Breakthroughs

» Step 2: Operationalize and automate the reconstruction




Breakthroughs

» Step 2: Operationalize and automate the reconstruction
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Breakthroughs

» Step 2: Operationalize and automate the reconstruction

@ python




Breakthroughs

» Step 2: Operationalize and automate the reconstruction
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Breakthroughs: The Pipeline

 Step 3: Operationalize and automate analysis
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Breakthroughs: The Pipeline
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Breakthroughs: The Pipeline

 Step 3: Operationalize and automate analysis
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Breakthroughs: The Pipeline
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Breakthroughs: The Pipeline
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Breakthroughs: The Pipeline
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Breakthroughs: The Pipeline
- Step 4: Putting it all together

Preprocessing
Denoising (image)

Analysis Module
Data format conversion
Segmentation

Emphysema scoring
CAD
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Breakthroughs

|. Heterogeneity

* Pipeline can capture wide range of clinical
parameters, patients, conditions, etc.

7. Robustness

* Pipeline allows efficient, high-throughput testing of
QI metrics and technigues

3. Data

* Pipeline allows generation of large-scale, unique,
custom datasets




Breakthroughs: The Pipeline

Preprocessing
Dose simulation

Denoising (raw)

Reconstruction
FreeCT_wFBP
FreeCT_ICD
Mfr. recon box
Scanner

Results!

Preprocessing
Denoising (image)

Analysis Module
Data format conversion

Segmentation
Emphysema scoring
CAD
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Breakthroughs: The Pipeline
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Studies

« Robustness analysis:

N Emaminejad, M Wahi-Anwar, J Hoffman, A Sultan, K Ruchalski, G Kim, J Goldin, M Brown, M McNitt-
Gray. Evaluation of CAD Nodule Detection Performance in Low Dose CT Lung Cancer Screening Across a Range
of Dose Levels, Slice Thicknesses and Reconstruction Kernels. AAPM Annual Meeting. July 31-Aug 3, 2017.

J Hoffman, M Wahi-Anwar , N Emaminejad , G Kim , M Brown , M McNitt-Gray. A Fully-Automated, High-
Throughput, Reconstruction and Analysis Pipeline for Quantitative Imaging in CT. AAPM Annual Meeting. July 31-
Aug 3, 2017.

J Hoffman, G Kim, J Goldin, M Brown, M McNitt-Gray. A Pilot Study Evaluating the Robustness of Density Mask
Scoring (RA-950), a Quantitative Measure of Chronic Obstructive Pulmonary Disease, to CT Parameter Selection
Using a High-Throughput, Automated, Computational Research Pipeline. AAPM Annual Meeting. July 31-Aug 3,
2017.

- Data generation:

Hoffman, J. M., Noo, F., Mcmillan, K., Young, S., & McNitt-Gray, M. Assessing nodule detection on lung cancer
screening CT: the effects of tube current modulation and model observer selection on detectability maps. In
Proc. SPIE Medical Imaging, 2016.

Hoffman, J., Noo, F., McNitt-Gray, M. Influence of Tube Current Modulation on Noise Statistics of Reconstructed
Images in Low-Dose Lung Cancer CT Screening. American Association of Physicists in Medicine 2017. Annual
Meeting and Exhibition, July 30-August 3, 2017, Denver CO.

« Test platform

T Zhoo, J Hoffman, M McNitt-Gray, D Ruan. Low-Dose CT Image Denoising Using An Optimized Wiener Filter in
the BM3D Algorithm. AAPM Annual Meeting. July 31-Aug 3, 2017.
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Conclusions

Thinking bigger
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Quantitative CT Imaging

* First patient scanin 1971
- First attempts at quantitative imaging by the mid-1970s

* Isherwood et al. - “Bone-Mineral Estimation By Computer-Assisted
Transverse Axial Tomography” 1976

« Attempts to translate to lung by late 1980s

« MdUller et al. - “Density Mask: An Objective Method to Quantitate
Emphysema Using Computed Tomography” 1988

« 30+ years of work on quantitative imaging and it’s largely*
unused clinically




Why No Clinical QCT¢

- Quantitative CT “feels” generally untrustworthy

* No one is quite sure that they can reproduce studies in the
literature

* If results are reproducible, are they comparable across
sites and studies?




Quantitative CT Imaging

Management of COPD: Is there a role for quantitative imaging?

Miranda Kirby (PhD)?®, Edwin ].R. van Beek (MD PhD)¢, Joon Beom Seo (MD PhD)¢,
Juergen Biederer (MD)®"¢, Yasutaka Nakano (MD PhD)", Harvey O. Coxson (PhD)P,
Grace Parraga (PhD)"»*

» “Despite the advances in imaging methods and measurements,
the road towards precision medicine in COPD is still long and will
require the standardization of imaging protocols and methods,
development and validation of imaging biomarkers, and
demonstrating efficacy in clinical trials.” (Kirby et al. 2016)




Quantitative CT Imaging

* In addition to older approaches, we now have:
« Perfusion, volumetry, etc.
« Computer Automated Detection/Diagnosis (CAD)
« Mammography: Late 80s, early 90s (Chan et al.)
* Lung nodules: Brown et al. “Towards a clinically usable CAD..."
« Radiomics

* Mining of quantitative data from images and attempt to correlate with
underlying disease or gene expression

« Aerts et al.: “Decoding Tumor Phenotype by Noninvasive Imaging Using a
Quantitative Radiomics Approach”




Quantitative CT Imaging

« And yet, despite dozens (maybe hundreds) of publications, we
see very little day-to-day usage of quantitative imaging with CT
« CAD for mammography

- CVIB just obtained grant to develop quantitative CT “report” to include

with lung screening, HOWEVER, makes crude classifications (none, mild,
medium, severe)

* ... Why?¢




Solutions

« Robustness evaluation - a critical component of every proposed
quantitative imaging test

- Check the performance of our test on a wide range of clinical imaging
conditions fo determine whether performance is maintained

- First we concede that heterogeneity isn't going anywhere
« Manufacturers

- Radiologist preferences
* Mistakes

 Even with rigorous standardization, it's not 100% clear that
everything researchers want to do is possible
- Evidence suggests that it may be possible, but no definitive answers



Conclusions

 Intfroduced a modular, guantitative image data
generation and analysis framework, “the pipeline”

* Pipeline will help start to close gaps that make people
uncomfortable with Qlin CT

* Pipeline’s flexibility also make it uniquely suited for other
applications
» Deep learning
- Evaluation of new technologies
« Open source




