Tailoring TCM schemes to a task: Evaluating the impact of customized TCM profiles on detection of lung nodules in simulated CT lung cancer screening

J. Hoffman¹, F. Noo², M. McNitt-Gray¹

¹Biomedical Physics Interdepartmental Program University of California Los Angeles, Los Angeles, CA

> ²Department of Radiology University of Utah, Salt Lake City, UT

AAPM Annual Meeting 2016

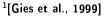
Disclosures

- John Hoffman:
 - ▶ Part-time intern, Toshiba Medical Research Institute, USA, Inc.
- Frederic Noo:
 - ▶ Insitutional research agreement, Siemens Healthcare
 - Receives research funding from Siemens Healthcare
- Michael McNitt-Gray:
 - ▶ Institutional research agreement, Siemens Healthcare
 - ▶ Past recipient, research grant support, Siemens Healthcare
 - Consultant, Toshiba America Medical Systems
 - ► Consultant, Samsung Electronics

- Introduction
 - Motivation
 - Background
 - Aim
- Methods
 - TCM Schemes
 - Simulation
- Results
- Discussion and Conclusions

AAPM 2016

- Introduction
 - Motivation
 - Background
 - Aim
- 2 Methods
 - TCM Schemes
 - Simulation
- Results
- Discussion and Conclusions



- Introduction
 - Motivation
 - Background
 - Aim
- Methods
 - TCM Schemes
 - Simulation
- Results
- 4 Discussion and Conclusions

Motivation

- Tube current modulation (TCM) is optimized for dose and noise reduction ¹
- Noise magnitude alone does not fully predict task-performance ²

²[Beutel et al., 2000, Boedeker et al., 2007]

J. Hoffman et al. (UCLA)

Motivation

- Tube current modulation (TCM) is optimized for dose and noise reduction ¹
- Noise magnitude alone does not fully predict task-performance ²

¹[Gies et al., 1999]

²[Beutel et al., 2000, Boedeker et al., 2007]

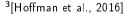
Aims

- How to optimize TCM schemes for detectability (task performance)?
- How would TCM schemes optimized for detectability differ from current clinical implementations?

7 / 41

Aims

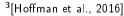
- How to optimize TCM schemes for detectability (task performance)?
- How would TCM schemes optimized for detectability differ from current clinical implementations?



- Introduction
 - Motivation
 - Background
 - Aim
- 2 Methods
 - TCM Schemes
 - Simulation
- Results
- 4 Discussion and Conclusions

Summary Hoffman et al. 2016 (SPIE)

- Detectability in fixed tube current vs. clinical TCM scheme³
- Detection of low contrast (ground glass) nodules in simulated lung screening
 - ▶ 6mm, 25 HU contrast, 131 Z locations
- Realistic phantom (XCAT⁴), scanner geometry (Sensation 64), finite focal spot, bowtie, reconstruction algorithm (FreeCT wFBP)


⁴[Segars et al., 2010]

AAPM 2016

Summary Hoffman et al. 2016 (SPIE)

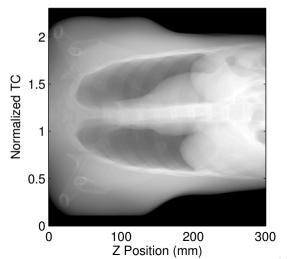
- Detectability in fixed tube current vs. clinical TCM scheme³
- Detection of low contrast (ground glass) nodules in simulated lung screening
 - ▶ 6mm, 25 HU contrast, 131 Z locations
- Realistic phantom (XCAT⁴), scanner geometry (Sensation 64), finite focal spot, bowtie, reconstruction algorithm (FreeCT wFBP)

⁴[Segars et al., 2010]

AAPM 2016

Summary Hoffman et al. 2016 (SPIE)

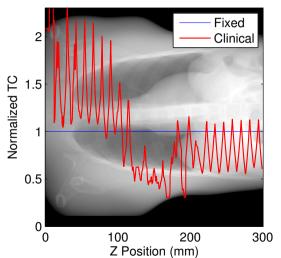
- Detectability in fixed tube current vs. clinical TCM scheme³
- Detection of low contrast (ground glass) nodules in simulated lung screening
 - ▶ 6mm, 25 HU contrast, 131 Z locations
- Realistic phantom (XCAT⁴), scanner geometry (Sensation 64), finite focal spot, bowtie, reconstruction algorithm (FreeCT wFBP)

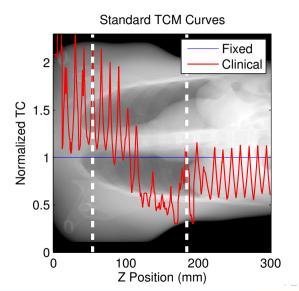


³[Hoffman et al., 2016]

⁴[Segars et al., 2010]

Geometry




Geometry

Geometry

Lung Cancer Screening

- Low-dose CT (LDCT) lung cancer screening has been shown to reduce lung cancer mortality and has recently been approved for use in the US
- Screening scans are performed using low-dose protocols that include the use of tube current modulation (TCM)
- Lots of modulation of the tube current (as opposed to head, abdomen or pelvis scans)

Lung Cancer Screening

- Low-dose CT (LDCT) lung cancer screening has been shown to reduce lung cancer mortality and has recently been approved for use in the US
- Screening scans are performed using low-dose protocols that include the use of tube current modulation (TCM)
- Lots of modulation of the tube current (as opposed to head, abdomen or pelvis scans)

Lung Cancer Screening

- Low-dose CT (LDCT) lung cancer screening has been shown to reduce lung cancer mortality and has recently been approved for use in the US
- Screening scans are performed using low-dose protocols that include the use of tube current modulation (TCM)
- Lots of modulation of the tube current (as opposed to head, abdomen or pelvis scans)

Detectability Maps

Plot of AUC as a function of nodule location

- AUC was calculated using model observers assuming Gaussian statistics
 - Hotelling observer
 - Channelized Hotelling observer with 40 Gabor channels
 - Multislice channelized Hotelling observer
- ullet 2500 unique noise realizations per TCM scheme (SNR error: pprox 3%)

Detectability Maps

- Plot of AUC as a function of nodule location
- AUC was calculated using model observers assuming Gaussian statistics
 - Hotelling observer
 - Channelized Hotelling observer with 40 Gabor channels
 - Multislice channelized Hotelling observer
- 2500 unique noise realizations per TCM scheme (SNR error: $\approxeq 3\%$)

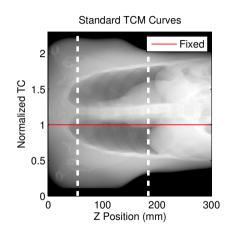
14 / 41

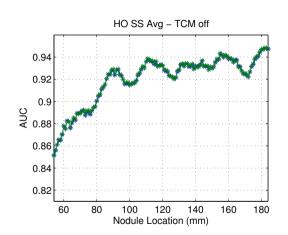
Detectability Maps

- Plot of AUC as a function of nodule location
- AUC was calculated using model observers assuming Gaussian statistics
 - Hotelling observer
 - Channelized Hotelling observer with 40 Gabor channels
 - Multislice channelized Hotelling observer
- 2500 unique noise realizations per TCM scheme (SNR error: $\approxeq 3\%$)

14 / 41

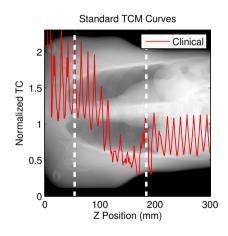
- Found that both fixed and clinical TCM produce non-uniform detectability throughout the lung
- Found trends were consistent across a variety of model observers (2D/3D, Channelized, etc.)





- Found that both fixed and clinical TCM produce non-uniform detectability throughout the lung
- Found trends were consistent across a variety of model observers (2D/3D, Channelized, etc.)

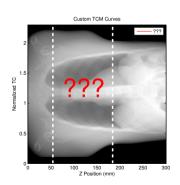
AAPM 2016

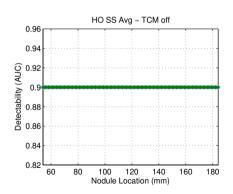


TCM **OFF**

AAPM 2016

TCM **ON**




- Introduction
 - Motivation
 - Background
 - Aim
- Methods
 - TCM Schemes
 - Simulation
- Results
- 4 Discussion and Conclusions

Purpose

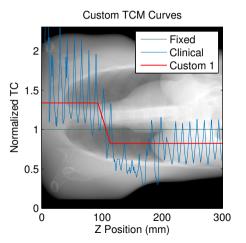
- Building off of initial work, explore
 - ▶ New TCM design schemes with uniform detectability

- Introduction
 - Motivation
 - Background
 - Aim
- 2 Methods
 - TCM Schemes
 - Simulation
- Results
- 4 Discussion and Conclusions

- Introduction
 - Motivation
 - Background
 - Aim
- Methods
 - TCM Schemes
 - Simulation
- Results
- 4 Discussion and Conclusions

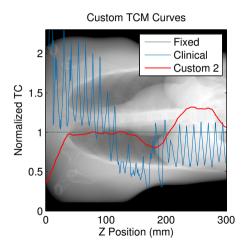
AAPM 2016

Methods

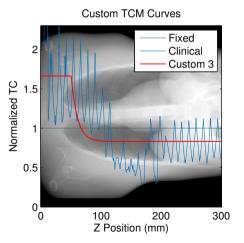

- Same experiment as Hoffman et al. 2016 however
 - ► Three custom TCM schemes

Custom TCM Scheme 1

• "Initial (Educated) Guess" - General trends in clinical TCM, [Hoffman et al., 2016]



Custom TCM Scheme 2


• "The Water Equivalent Diameter" - Based on WED

AAPM 2016

Custom TCM Scheme 3

• "The Exponential" - Heuristic based on observations of custom TCM 1 and 2

- Introduction
 - Motivation
 - Background
 - Aim
- Methods
 - TCM Schemes
 - Simulation
- Results
- Discussion and Conclusions

Simulation Methods

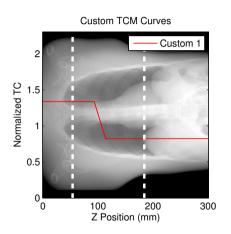
- 2500 noise realization per scheme
- 6mm, 25 HU ground-glass nodules in simulated lung screening
- Detectability maps
 - Hotelling observer
 - Channelized Hotelling observer

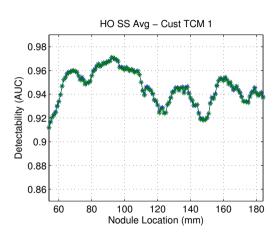
Simulation Methods

- 2500 noise realization per scheme
- 6mm, 25 HU ground-glass nodules in simulated lung screening
- Detectability maps
 - Hotelling observer
 - Channelized Hotelling observer

Simulation Methods

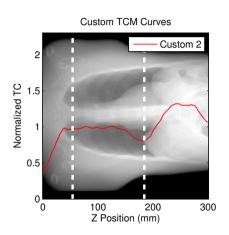
- 2500 noise realization per scheme
- 6mm, 25 HU ground-glass nodules in simulated lung screening
- Detectability maps
 - Hotelling observer
 - Channelized Hotelling observer

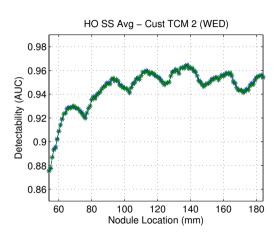



Outline

- Introduction
 - Motivation
 - Background
 - Aim
- 2 Methods
 - TCM Schemes
 - Simulation
- Results
- 4 Discussion and Conclusions

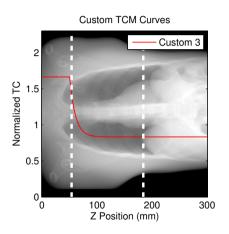
(1) Initial (Educated) Guess - HO

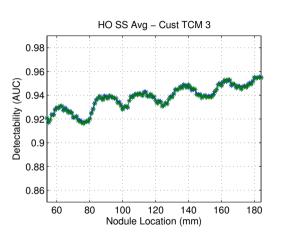




• "Leveled" in lower lung, but failed to lever upper lung

(2) The W.E.D. - HO





• Too similar to fixed TC case through the region of interest

(3) The Exponential - HO

• While not level, is at least linear with smallest range

AAPM 2016

Summary

- In custom modulated TC scans
 - ► "The Exponential" was closest to our goal of uniform detectability
 - ★ Smallest detectability range
 - ★ most linear performance
 - "The WED" showed that WED was not sufficient for the prediction of detectability
 - Some sort of tube-angle/eccentricity compensation appears necessary

Summary

- In custom modulated TC scans
 - "The Exponential" was closest to our goal of uniform detectability
 - ★ Smallest detectability range
 - ★ most linear performance
 - "The WED" showed that WED was not sufficient for the prediction of detectability
 - ► Some sort of tube-angle/eccentricity compensation appears necessary

Summary

- In custom modulated TC scans
 - "The Exponential" was closest to our goal of uniform detectability
 - ★ Smallest detectability range
 - ★ most linear performance
 - "The WED" showed that WED was not sufficient for the prediction of detectability
 - ► Some sort of tube-angle/eccentricity compensation appears necessary

Outline

- Introduction
 - Motivation
 - Background
 - Aim
- 2 Methods
 - TCM Schemes
 - Simulation
- Results
- 4 Discussion and Conclusions

Discussion

- Reaffirmed: TCM has a non-trivial impact on detection of difficult, low-contrast lesions
- Uniform detectability curves are likely achievable
- Detection-optimized TCM schemes are quite different than current clinical schemes

Discussion

- Reaffirmed: TCM has a non-trivial impact on detection of difficult, low-contrast lesions
- Uniform detectability curves are likely achievable
- Detection-optimized TCM schemes are quite different than current clinical schemes

Discussion

- Reaffirmed: TCM has a non-trivial impact on detection of difficult, low-contrast lesions
- Uniform detectability curves are likely achievable
- Detection-optimized TCM schemes are quite different than current clinical schemes

Limitations

- Theoretical, idealized study
- Phantom does not have arms
- MOs tend to "over-perform"
 - Requires very difficult task
 - ▶ Perhaps too difficult to be relevant human readers
 - ► Still probably relevant to CAD, quantitative imaging

35 / 41

- Correlate detectability to physical metrics
 - ► WED (other attenuation-based measure?)
 - Eccentricity
 - ► Slice heterogeneity
- Generalized approach for prospective TCM optimization based on "planning" scan or topogram?
- Dose impacts of detectability-optimized TCM schemes
- Potential clinical/disease impact of uniform detectability

- Correlate detectability to physical metrics
 - ► WED (other attenuation-based measure?)
 - Eccentricity
 - Slice heterogeneity
- Generalized approach for prospective TCM optimization based on "planning" scan or topogram?
- Dose impacts of detectability-optimized TCM schemes
- Potential clinical/disease impact of uniform detectability

- Correlate detectability to physical metrics
 - WED (other attenuation-based measure?)
 - Eccentricity
 - Slice heterogeneity
- Generalized approach for prospective TCM optimization based on "planning" scan or topogram?
- Dose impacts of detectability-optimized TCM schemes
- Potential clinical/disease impact of uniform detectability

- Correlate detectability to physical metrics
 - WED (other attenuation-based measure?)
 - Eccentricity
 - Slice heterogeneity
- Generalized approach for prospective TCM optimization based on "planning" scan or topogram?
- Dose impacts of detectability-optimized TCM schemes
- Potential clinical/disease impact of uniform detectability

Finally...

Thank you for your interest and any questions!

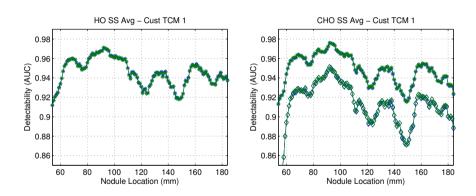
37 / 41

References

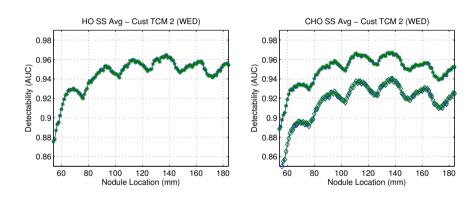
Beutel, J., Kundel, H., and Van Metter, R. (2000). Handbook of Medical Imaging: Physics and Psychophysics. SPIE Press, 1 edition.

Boedeker, K. L., Cooper, V. N., and McNitt-Gray, M. F. (2007). Application of the noise power spectrum in modern diagnostic MDCT: part I. Measurement of noise power spectra and noise equivalent quanta. *Physics in medicine and biology*, 52(14):4047-61.

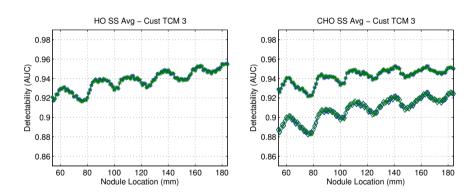
Gies, M., Kalender, W. a., Wolf, H., Suess, C., and Madsen, M. T. (1999). Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies. *Medical physics*, 26(2235):2248-2253.


Hoffman, J. M., Noo, F., Mcmillan, K., Young, S., and McNitt-Gray, M. (2016). Assessing nodule detection on lung cancer screening CT: the effects of tube current modulation and model observer selection on detectability maps. In *Proc. SPIE Medical Imaging*.

Segars, W. P., Sturgeon, G., Mendonca, S., Grimes, J., and Tsui, B. M. W. (2010). 4D XCAT phantom for multimodality imaging research. *Medical physics*, 37(9):4902–4915.


"Shot in the Dark" - CHO

• Trends are same between HO, CHO, and CHO with internal noise


"The W.E.D." - CHO

• Trends are same between HO, CHO, and CHO with internal noise

"The Exponential" - CHO

• Absence of high-frequency modulation very notable

